🎓 Ui, schon PrĂŒfungszeit? Hier geht's zur Mathe-PrĂŒfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Aufgaben zu indirekt proportionalen Zuordnungen

  1. 1

    Um ein Rechteck mit einem FlĂ€cheninhalt von 24 cm2 ï»żzu erhalten, kannst du die LĂ€nge (x in cm) und Breite (y in cm) der Seiten des Rechtecks unterschiedlich wĂ€hlen.

    Rechteck

    a) Bestimme alle ganzzahligen Paare aus LÀnge und Breite, die ein Rechteck mit einem FlÀcheninhalt von 24 cm2 ergeben. Trage die Wertepaare in eine Wertetabelle ein.

    b) Stelle mit Hilfe der Tabelle den Zusammenhang der beiden GrĂ¶ĂŸen graphisch dar.

    c) Bestimme nun den zum Graphen zugehörigen Funktionsterm. Vewende dazu die Formel fĂŒr den FlĂ€cheninhalt eines Rechtecks.

  2. 2

    Um den Zusammenhang zwischen der Grundlinie und der zugehörigen Höhe eines Dreiecks mit Flächeninhalt 6 cm2 darzustellen, kannst du die Länge (x in cm) der Grundlinie und die Höhe (y in cm) unterschiedlich wĂ€hlen.

    Dreieck

    a) Bestimme alle ganzzahligen Paare aus Grundlinie (Grundseite) und zugehörige Höhe, die ein Dreieck mit einem FlÀcheninhalt von 6 cm2 ergeben. Trage die Werte in eine Tabelle ein.

    b) Stelle mit Hilfe der Tabelle den Zusammenhang zwischen Grundseite und Höhe dar. Warum darf man die Punkte verbinden, wenn auch andere als ganzzahlige Paare zugelassen werden?

    c) Bestimme nun die zugehörige Funktion des Graphen. Betrachte dazu die Formel fĂŒr den FlĂ€cheninhalt eines Dreiecks.

  3. 3

    Ordne jedem der Funktionsgraphen die passende Funktion zu.

    Funktionen der indirekten ProportionalitÀt
    • f:f(x)=x;Df=ℚ

    • f:f(x)=2x;Df=ℚ∖{0}

    • f:f(x)=−2x;Df=ℚ∖{0}

    • f:f(x)=0,3x;Df=ℚ∖{0}

    • f:f(x)=−5x;Df=ℚ


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?